The molar mass of the gas is 77.20 gm/mole.
Explanation:
The data given is:
P = 3.29 atm, V= 4.60 L T= 375 K mass of the gas = 37.96 grams
Using the ideal Gas Law will give the number of moles of the gas. The formula is
PV= nRT (where R = Universal Gas Constant 0.08206 L.atm/ K mole
Also number of moles is not given so applying the formula
n= mass ÷ molar mass of one mole of the gas.
n = m ÷ x ( x molar mass) ( m mass given)
Now putting the values in Ideal Gas Law equation
PV = m ÷ x RT
3.29 × 4.60 = 37.96/x × 0.08206 × 375
15.134 = 1168.1241 ÷ x
15.134x = 1168.1241
x = 1168.1241 ÷ 15.13
x = 77.20 gm/mol
If all the units in the formula are put will get cancel only grams/mole will be there. Molecular weight is given by gm/mole.
<u>Hydrogen bonds </u>are weak bonds that are not strong enough to hold atoms together to form molecules but are strong enough to form bonds within and around large molecules.
- The hydrogen bond is weak bond.
- The hydrogen bond is electrostatic force of attraction between hydrogen atom and more electronegative atoms or group ( like Florine , oxygen or nitrogen) which is contently bonded.
- The hydrogen bond is occur in polar , contently bond atoms in different molecules.
- Example is H-O-H or

- The positively charged hydrogen side of one water molecule is bond with negatively charged oxygen side of another molecule.
learn about Hydrogen bond
brainly.com/question/10904296
#SPJ4
Yes it is used , hope this helps
Physical changes occur when objects or substances undergo a change that does not change their chemical composition. This contrasts with the concept of chemical change in which the composition of a substance changes or one or more substances combine or break up to form new substances.
2 boxes of A
Because C = A + B
2 of A = 20 grams
at the other hand we have 2 of B = 10
So 20 + 10 = 30 grams