Answer: conducir la política, acciones y asuntos de (un estado, organización o personas).
Answer:
Explanation:
From the question we are told that
The moment of inertia is 
The final angular speed is 
The time taken is 
The initial angular speed is 
Generally the average angular acceleration is mathematically represented as

=> 
=> 
Generally the torque is mathematically represented as

=> 
=> 
Answer:
(A) Total energy will be equal to 
(b) Energy density will be equal to 
Explanation:
We have given diameter of the plate d = 2 cm = 0.02 m
So area of the plate 
Distance between the plates d = 0.50 mm = 
Permitivity of free space 
Potential difference V =200 volt
Capacitance between the plate is equal to 
(a) Total energy stored in the capacitor is equal to


(b) Volume will be equal to
, here A is area and d is distance between plates

So energy density 
Answer:
False
Explanation:
In addition to stars, our galaxy contains abundant diffuse matter that is distributed throughout its volume and constitutes what we call the interstellar medium. This medium plays a fundamental role in the life cycle of the stars, since it is where the matter from which they are born resides, and it is the place to which it returns when the stars expel their outer layers at death.
The interstellar medium is a complex environment. <u>Its matter is </u><u>not </u><u>distributed uniformly</u>, but consists of different phases with temperatures ranging from a few degrees Kelvin (near absolute zero) in the areas of star formation to the millions of degrees Kelvin observed in supernova remnants. The densities of interstellar matter also vary orders of magnitude according to the phase, but they are always so low that they rival those that can be achieved in the best vacuum chambers of terrestrial laboratories. Depending on the density and temperature conditions, interstellar matter is in a molecular, atomic, or ionized state, although the state is not permanent, since matter circulates between the different phases in a continuous cycle of evolution on a galactic scale.
Due to the very different characteristics of its multiple phases, the interstellar medium has to be studied using various observational techniques and different types of telescopes. The coldest components of the interstellar medium do not emit visible light, and require the observation of telescopes sensitive to the weak emission of radio waves that this material produces. Using different radio telescopes, such as the 40-meter diameter of the Yebes Observatory, which the Institute of Radio Astronomy Millimeter, to which the IGN belongs, has in Grenoble and Granada, or the recently opened Atacama Large Millimeter / submillimeter Array in the Atacama desert in Chile, astronomers from the National Astronomical Observatory contribute to characterize the physical and chemical properties of the molecular clouds where stars are born and of the circumestellar shells produced by the stars in the last stages of their lives . The study of these regions is helping to complete our knowledge of the most unknown phases of the complex life cycle of stars.