Answer:
see explanation
Explanation:
Given quantities:
radius = r = 0.0558 [m]
current = I = 0.23 [A]

Now we solve this by obtaining the torque acting on the dipole

We obtain the magnetic moment vector M, first, |M| is defined as
, where A is the cross-section area of the loop which is
then
![|M| = 0.23*0.00978 = 0.00225 [A/m^2]](https://tex.z-dn.net/?f=%7CM%7C%20%3D%200.23%2A0.00978%20%3D%200.00225%20%5BA%2Fm%5E2%5D)
now the magnetic moment vector is equal to the magnetic dipole moment vector multiplied the magnitude we just obtained

Now:
a ) 
b) 
a) the determinant gives us:

b) the dot product gives = ![-1*-7.2*10^{-6} = 7.2*10^{-6}[J]](https://tex.z-dn.net/?f=%20-1%2A-7.2%2A10%5E%7B-6%7D%20%3D%207.2%2A10%5E%7B-6%7D%5BJ%5D)
Force is equal to mass multiplied by acceleration. Hope this helps!
I think that this is false but I am not sure
Given the particle's acceleration is

with initial velocity

and starting at the origin, so that

you can compute the velocity and position functions by applying the fundamental theorem of calculus:


We have
• velocity at time <em>t</em> :

• position at time <em>t</em> :

Force is defined as Mass multiplied by Acceleration, or F = MA.
We have our mass, 15 kg.
We also have our acceleration, 8 m/s^2.
Let's plug in our numbers and solve.
F = 15(8)
Multiply 8 by 15.
8 • 15 = 120.
Your Force is 120.
Remember, the unit of measure for Force is Newtons (N).
Your final answer is:
120N.
I hope this helps!