Answer:
0.09 N
Explanation:
We are given that
Radius of disk,r=6 cm=
1 m=100 cm
B=1 T
Current,I=3 A
We have to find the frictional force at the rim between the stationary electrical contact and the rotating rim.





Torque due to friction

Where friction force=F


Substitute the values


The theodolite is a precision measuring device used to measure horizontal and vertical angles. It works with a combination of: (1) optical plummets, which is used to ensure that it is placed exactly vertical above; (2) internal spirit, which ensures that it is levelled to the horizon; and (3) graduated circles, one vertical and one horizontal, which is used to measure actual angles. The mounted telescope can swivel horizontally and vertically. If this is adjusted correctly, accurate measurements can be obtained.
Answer:
Power_input = 85.71 [W]
Explanation:
To be able to solve this problem we must first find the work done. Work is defined as the product of force by distance.

where:
W = work [J] (units of Joules)
F = force [N] (units of Newton)
d = distance [m]
We need to bear in mind that the force can be calculated by multiplying the mass by the gravity acceleration.
Now replacing:
![W = (80*10)*3\\W = 2400 [J]](https://tex.z-dn.net/?f=W%20%3D%20%2880%2A10%29%2A3%5C%5CW%20%3D%202400%20%5BJ%5D)
Power is defined as the work done over a certain time. In this way by means of the following formula, we can calculate the required power.

where:
P = power [W] (units of watts)
W = work [J]
t = time = 40 [s]
![P = 2400/40\\P = 60 [W]](https://tex.z-dn.net/?f=P%20%3D%202400%2F40%5C%5CP%20%3D%2060%20%5BW%5D)
The calculated power is the required power. Now as we have the efficiency of the machine, we can calculate the power that is introduced, to be able to do that work.
![Effic=0.7\\Effic=P_{required}/P_{introduced}\\P_{introduced}=60/0.7\\P_{introduced}=85.71[W]](https://tex.z-dn.net/?f=Effic%3D0.7%5C%5CEffic%3DP_%7Brequired%7D%2FP_%7Bintroduced%7D%5C%5CP_%7Bintroduced%7D%3D60%2F0.7%5C%5CP_%7Bintroduced%7D%3D85.71%5BW%5D)
<span>a thin fibrous cartilage between the surfaces of some joints, e.g., the knee.</span>
Answer:
H = start height (v = 0)
h = present height
v = present speed
assuming no friction
total energy = PE + KE
mgH = mgh + .5mv^2
if PE = KE then
mgH = mgh + mgh
h = H/2
potential energy = kinetic energy when object is at half its start height.
Explanation: