Answer:
k = 3.5 N/m
Explanation:
It is given that the time period the bob in pendulum is the same as its time period in spring mass system:


where,
k = spring constant = ?
g = acceleration due to gravity = 9.81 m/s²
m = mass of bob = 125 g = 0.125 kg
l = length of pendulum = 35 cm = 0.35 m
Therefore,

<u>k = 3.5 N/m</u>
Answer to A spring<span> is </span>stretched<span> to a </span>displacement<span> of </span>3.4 m<span> from </span>equilibrium<span>. </span>Then<span> the </span>spring<span> is</span>released<span> and ... </span>Then<span> the </span>spring<span> is </span>released<span> and </span>allowed<span> to </span>recoil<span> to a </span>displacement<span> of </span>1.9 m<span> from</span>equilibrium<span>. The </span>spring constant<span> is </span>11 N/m<span>. What </span>best describes<span> the </span>work involved<span> as the </span>spring recoils<span>? A)87 J of </span>work<span> is performed ...</span>
Answer:
V = 90.51 m/s
Explanation:
From the given information:
Initial speed (u) = 0
Distance (S) = 391 m
Acceleration (a) = 18.9 m/s²
Using the relation for the equation of motion:
v² - u² = 2as
v² - 0² = 2as
v² = 2as


v = 121.57 m/s
After the parachute opens:
The initial velocity = 121.57 m/ss
Distance S' = 332 m
Acceleration = -9.92 m/s²
How fast is the racer can be determined by using the relation:


V = 90.51 m/s
The solution for this problem is through this formula:Ø = w1 t + 1/2 ã t^2
where:Ø - angular displacement w1 - initial angular velocity t - time ã - angular acceleration
128 = w1 x 4 + ½ x 4.5 x 5^2 128 = 4w1 + 56.254w1 = -128 + 56.25 4w1 = 71.75w1 = 71.75/4
w1 = 17.94 or 18 rad s^-1
w1 = wo + ãt
w1 - final angular velocity
wo - initial angular velocity
18 = 0 + 4.5t t = 4 s