Answer:
<em>yh thats true lol, ty for that very interesting fact</em>
Answer:
The answer to your question is 88.7 ml
Explanation:
Data
Volume = ?
Concentration of NaOH = 0.142 M
Volume of H₂C₄H₄O₆ = 21.4 ml
Concentration of H₂C₄H₄O₆ = 0.294 M
Balanced chemical reaction
2 NaOH + H₂C₄H₄O₆ ⇒ Na₂C₄H₄O₆ + 2H₂O
1.- Calculate the moles of H₂C₄H₄O₆
Molarity = moles/volume
Solve for moles
moles = Molarity x volume
Substitution
moles = 0.294 x 21.4/1000
Result
moles = 0.0063
2.- Use proportions to calculate the moles of NaOH
2 moles of NaOH ------------------ 1 moles of H₂C₄H₄O₆
x ------------------ 0.0063 moles
x = (0.0063 x 2) / 1
x = 0.0126 moles of NaOH
3.- Calculate the volume of NaOH
Molarity = moles / volume
Solve for volume
Volume = moles/Molarity
Substitution
Volume = 0.0126/0.142
Result
Volume = 0.088 L or 88.7 ml
<span>The particles in a liquid are not stuck in fixed positions, which is why liquids flow to take the shape of a container into which they are placed. Hope this helps :D</span>
The law of conservation has been stated that the mass and energy has neither be created nor destroyed in a chemical reaction.
The law of conservation has been evident when there has been an equal number of atoms of each element in the chemical reaction.
<h3>Conservation law</h3><h3 />
The given equation has been assessed as follows:
The reactant has absence of hydrogen, while hydrogen has been present in the product. Thus, the reaction will not follow the law of conservation.
The number of atoms of each reactant has been different on the product and the reactant side. Thus, the reaction will not follow the law of conservation.
The reactant has the presence of carbon, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
The product has the presence of hydrogen, while it has been absent in the reactant. Thus, the reaction will not follow the law of conservation.
Learn more about conservation law, here:
brainly.com/question/2175724
Answer:
(a) boiling point
(d) density at a given temperature and pressure.
Explanation:
Isomers are compounds that have the same molecular formula but different structural formulas. They differ in chemical and physical properties depending on the type of isomerism displayed by the compounds.
The compounds stated here are structural or constitutional isomers hence they possess different boiling points and densities at a given temperature and pressure owing to structural differences in the molecules.
Since they have the same molecular formula, they must yield the same result during combustion analysis and they must have the same molecular weight.