Maybe because of shipping costs and if you need to buy materials from a far place such as different international travels?
Answer:
(a) 6.91 mm (b) 160 MPa
Explanation:
Solution
Given that:
E = 200 GPa
The rod length = 48 mm
P =P¹ = 6 kN
Recall that,
1 kN = 10^3 N
1 m =10^3 mm
I GPa = 10^9 N/m²
Thus
The rod deformation is stated as follows:
δ = PL/AE-------(1)
σ = P/A----------(2)
Now,
(a) We substitute the values in equation and obtain the following:
48 * 10 ^⁻3 m = (6 * 10³ N) (60 m)/A[ 200 * 10^9 N/m^2]
Thus, we simplify
A = (6 * 10³) (60)/ ( 200 * 10^9) (48 * 10 ^⁻3)m²
A =0.0375 * 10 ^⁻3 m²
A =37.5 mm²
A = π/4 d²
Thus,
d² = 4A /π
After inserting the values we have,
d = √37.5 * 4/3.14 mm
= 6.9116 mm
or d = 6.91 mm
Therefore, the smallest that should be used is 6.91 mm
(B) To determine the corresponding normal stress that is caused by the tensile force, we input the values in equation (2)
Thus,
σ = P/A
σ= 6 * 10 ^ 3 N/ 37. 5 * 10 ^⁻6 m²
σ= 160 MPa
Note: I MPa = 10^6 N/m²
Hence the the corresponding normal stress is σ= 160 MPa
Answer:
Both Technician A and technician B are correct.
Explanation: A transistor must have a P-N junction as that is where the positive and negative charges are connected.
A transistor also can be described as a semiconductor which acts as a switch and can be used to amplify currents. Transistors are very key and vital to electronic devices especially the mobile phones in recent times, it helps to ensure that electronic systems perform optimally.
The charges in the P-N junction is controlled by the availability of Positive and negative electrons.
Answer:
Temperature distribution is 
Heat flux=q
Heat rate=q A
Explanation:
We know that for no heat generation and at steady state



a and are the constant.
Given that heat flux=q
We know that heat flux given as

From above we can say that

Alos given that when x= L temperature is T(L)=T


So temperature T(x)


So temperature distribution is 
Heat flux=q
Heat rate=q A (where A is the cross sectional area of wall)