Density=mass/ volume so you solve for volume and get 461.96 mL
Answer:
17.55 g of NaCl
Explanation:
The following data were obtained from the question:
Molarity = 3 M
Volume = 100.0 mL
Mass of NaCl =..?
Next, we shall convert 100.0 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
100 mL = 100/1000
100 mL = 0.1 L
Therefore, 100 mL is equivalent to 0.1 L.
Next, we shall determine the number of mole NaCl in the solution. This can be obtained as follow:
Molarity = 3 M
Volume = 0.1 L
Mole of NaCl =?
Molarity = mole /Volume
3 = mole of NaCl /0.1
Cross multiply
Mole of NaCl = 3 × 0.1
Mole of NaCl = 0.3 mole
Finally, we determine the mass of NaCl required to prepare the solution as follow:
Mole of NaCl = 0.3 mole
Molar mass of NaCl = 23 + 35.5 = 58.5 g/mol
Mass of NaCl =?
Mole = mass /Molar mass
0.3 = mass of NaCl /58.5
Cross multiply
Mass of NaCl = 0.3 × 58.5
Mass of NaCl = 17.55 g
Therefore, 17.55 g of NaCl is needed to prepare the solution.
Answer:
Volume of NCl3 is 3L
Explanation:
Avogadro states: All gases at the same volume under temperature and pressure constant have the same number of moles.
The chemical equation is:
3Cl2(g) + N2(g) → 2NCl3(g)
Where 3 moles of chlorine reacts with 1 mole of nitrogen to produce 2 moles of NCl3.
But using Avogadros law we can say:
3L of chlorine and 1L of nitrogen produce 2L of Nitrogen trichloride.
3L of chlorine and 1L of nitrogen: 4L (The stoichiometric mixture)
That means, volume of NCl3 produced is 3L
Answer:
mgh is the formula for potential energy
I’m pretty sure that they mostly design building structures!