Power = Force * Distance/ time
P = 1,250 * 2/3
P = 2,500/3
P = 833.33 Watts
So, your final answer is 833.33 Watts
The force exerted by the magnetic in terms of the magnetic field is,

Where B is the magnetic fied strength and F is the force.
Thus, if the magnetic A has twice magnetic field strength than the magnet B,
Then,

Thus, the force exerted by the magnet B is,

Thus, the force exerted by the magnet B on magnet A is 50 N.
The force exerted by the magnet A exerts on the magnet B is exactly 100 N as given.
Hence, the option B is the correct answer.
Answer:
The magintude of the acceleration for both objects is 
Explanation:
Drawing a free body diagram on the two boxes we can analyze the system more easily.
we can take the acceleration going up as positive for reference purposes.
for mA let's suppose that is ascending so:

and for mB (descending):


because the two boxes has the same acceleration because they are attached together:

So the magintude of the acceleration for both objects is 
Answer:
-2
Explanation:
Since its a compound, it's charge is 0.
So, there are 2 Fe and 3 Oxygen,
let x = oxidation number of oxygen
2(+3) + 3x =0
x =-2
Side note : even if the oxidation number is positive, make sure to put the positive sign like how you would in numbers
A gravitational field is the field generated by a massive body, that extends into the entire space. Every object with mass m experiences a force F when immersed in a gravitational field. The intensity of the force is equal to

where

is the gravitational constant, M is the mass of the source of the field (e.g. the mass of a planet), and r is the distance between the object and the source of the field. The force is always attractive.
A possible way to measure the intensity of a gravitational field is by measuring the acceleration a of the object immersed in this field. In fact, for Newton's second law we have:

but since

we can write

Therefore, by measuring the acceleration of the object, we also measure the intensity of the field.