Answer:
F₂= 210 pounds
Explanation:
Conceptual analysis
Hooke's law
Hooke's law establishes that the elongation (x) of a spring is directly proportional to the magnitude of force (F) applied to it, provided that said spring is not permanently deformed:
F= K*x Formula (1)
Where;
F is the magnitude of the force applied to the spring in Newtons (Pounds)
K is the elastic spring constant, which relates force and elongation. The higher its value, the more work it will cost to stretch the spring. (Pounds/inch)
x the elongation of the spring (inch)
Data
The data given is incorrect because if we apply them the answer would be illogical.
The correct data are as follows:
F₁ =80 pounds
x₁= 8 inches
x₂= 21 inches
Problem development
We replace data in formula 1 to calculate K :
F₁= K*x₁
K=( F₁) / (x₁)
K=( 80) / (8) = 10 pounds/ inche
We apply The formula 1 to calculate F₂
F₂= K*x₂
F₂= (10)*(21)
F₂= 210 pounds
Answer:
Height will be 3.8971 m
Explanation:
We have given that radius of the solid r = 1.60 m
Mass of the solid disk m = 2.30 kg
Angular velocity 
Moment of inertia is given by 
Transnational Kinetic energy is given by
as we know that v = 
So 
Rotational kinetic energy is given by 
Potential energy is given by mgh
According to energy conservation


Answer: Helium has 2 protons.
U=10 m/s
v=30 m/s
t=6 sec
therefore, a=(v-u)/t
=(30-10)/6
=(10/3) ms^-2
now, displacement=ut+0.5*a*t^2
=60+ 0.5*(10/3)*36
=120 m
And you can solve it in another way:
v^2=u^2+2as
or, s=(v^2-u^2)/2a
=(900-100)/6.6666666.......
=120 m
The specific heat of a metal or any element or compound can be determined using the formula Cp = delta H / delta T / mass. delta pertains to change. That is change in enthalpy and change in temperature. From the given data, Cp is equal to 343 cal per (86-19) c per 55 grams. This is equal to 0.093 cal / g deg. Celsius