Answer:
When Magenta light is shown on a green surface, it looks black.
Explanation:
It absorbs the Magenta light and also reflects none of the light.
Answer:
0.247 μC
Explanation:
As both sphere will be at the same level at wquilibrium, the direction of the electric force will be on the x axis. As you can see in the picture below, the x component of the tension of the string of any of the spheres should be equal to the electric force of repulsion. And its y component will be equal to the weight of one sphere. We can use trigonometry to find the components of the tensions:



The electric force is given by the expression:

In equilibrium, the distance between the spheres will be equal to 2 times the length of the string times sin(50):

And k is the coulomb constan equal to 9 *10^9 N*m^2/C^2. q1 y q2 is the charge of each particle, in this case, they are equal.


O 0.247 μC
Explanation :
Antoine-Laurent Lavoisier reported four "element" classifications but included some substances that were combinations of elements rather than true elements in his listing.
He is also known as " father of modern chemistry". He gives the modern system of naming chemical substances. He also gives a theory for chemical reactivity of the oxygen.
Answer:
electrons exist in specified energy levels
Explanation:
In its gold-foil scattering with alpha particles, Rutherford proved that the plum-pudding model of the atom theorised by Thomson was wrong.
From his experiment, Rutherford inferred that the atom actually consists of a very small nucleus, where all the positive charge is concentrated, and the rest of the atom is basically empty, with the electrons (negatively charged) orbiting around the nucleus at very large distance.
However, Rutherford did not specify anything about the orbits of the electrons. Later, Bohr predicted that the electrons actually orbit the nucleus in specific orbits, each orbit corresponding to a specific energy level. Bohr's model found confirmation in the observation of the emission spectrum lines: when an electron in one of the higher energy level jumps down into an orbit with lower energy, the atom emits a photon which has an energy exactly equal to the difference in energy between the two orbits (and this energy of the photon corresponds to a precise wavelength).