The reaction between HNO3 and Ba(OH)2 is given by the equation below;
2HNO3 + Ba(OH)2 = Ba(NO3)2 + 2H2O
Moles of Barium hydroxide used;
= 0.200 × 0.039 l
= 0.0078 Moles
The mole ratio of HNO3 and Ba(OH)2 is 2: 1
Therefore; moles of nitric acid used will be;
= 0.0078 ×2 = 0.0156 moles
But; 0.0156 moles are equal to a volume of 0.10
The concentration of Nitric acid will be;
= (0.0156 × 1)/0.1
= 0.156 M
Answer:
Stoichiometry measures these quantitative relationships, and is used to determine the amount of products and reactants that are produced or needed in a given reaction. Describing the quantitative relationships among substances as they participate in chemical reactions is known as reaction stoichiometry.
Explanation:
Answer: sum of the pressure of the two gases present.
Explanation:
According to Dalton's law, the total pressure of a mixture of gases is the sum of individual pressures exerted by the constituent gases.
For example if there are there are two gases hydrogen and oxygen with individual pressure of 30 and 20 atm each. Then the total pressure in the container will be:
Thus

Thus if two gases are present in a container, the total pressure in the container is equal to sum of the pressure of the two gases present.
Answer:
Measure the volume of water poured into a graduated cylinder, then place the object in the water and remeasure the volume. The difference between the two volume measurements is the volume of the object. Now simply divide the mass by the volume to calculate the density of the object.
Question: <em>What is the hybridization of each carbon and oxygen atoms in vitamin C?</em>
Answer:
1. To decide the hybridization of a carbon, look at how many atoms are attached to it (including the hydrogens that may be unwritten). If there are 4 total atoms attached (all with single bonds), the carbon must have sp3 orbitals (there are 4 of them). If 3, then sp2. If 2, then sp. Carbon can't be sp3d or sp3d2 hybridized because carbon is in the 2nd period of the periodic table and doesn't possess any d orbitals to hybridize.
2. Not sure what this question means. Did you mean to type just C-C bonds? If so, just count the number of bonds between 2 carbon atoms!
3. Use VSEPR. The bond angle is as great as possible, based on the repulsion of the valence electron pairs (both bonded and lone). This is also related to hybridization. sp3 hybrid orbitals are 109.5 degress apart, sp2 is 120, sp is 180.
4. See part 1. Determine the hybridization of both C4 and C5. The overlap of an orbital from each carbon is what forms the sigma bond.