Heat produced = -13588.956 kJ
<h3>Further explanation</h3>
Given
The reaction of combustion of Methane
CH4(g)+2O2(g)→CO2(g)+2H2O(g) ΔH∘rxn=−802.3kJ
271 g of CH4
Required
Heat produced
Solution
mol of 271 g CH₄ (MW=16 g/mol0
mol = mass : MW
mol = 271 : 16
mol = 16.9375
So Heat produced :
= mol x ΔH°rxn
= 16.9375 mol x −802.3kJ/mol = -13588.956 kJ
Answer:
m = 4450 g
Explanation:
Given data:
Amount of heat added = 4.45 Kcal ( 4.45 kcal ×1000 cal/ 1kcal = 4450 cal)
Initial temperature = 23.0°C
Final temperature = 57.8°C
Specific heat capacity of water = 1 cal/g.°C
Mass of water in gram = ?
Solution:
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = 57.8°C - 23.0°C
ΔT = 34.8°C
4450 cal = m × 1 cal/g.°C × 34.8°C
m = 4450 cal / 1 cal/g
m = 4450 g
Answer:
Option C
CH₃CH₂CH₂COOH
Explanation:
Carbonxylic acids are compounds which has the general formula
R–COOH where R is an alkyl group.
Considering the options given in the question above,
For A:
CH₃CH₂OCH₂CH₃ is an ether compound with general formula ROR' where R and R' are both alkyl group.
For B:
CH₃CH₂CH₂CH₂OH is an alcohol with general formula ROH where R is an alkyl group.
For C:
CH₃CH₂CH₂COOH is a carbonxylic acid with general formula R–COOH where R is an alkyl group.
For D:
CH₃CH₂C=OCH₂CH₃ is a ketone compound with general formula RC=OR' where R and R' are both alkyl group
For E:
ClCH₂CH₂CH₂CH₂CH₂CH₂Br is simply an Alkyl halide with general formula XRX where X is an halogen (i.e F, Cl, Br or I) and R is an alkyl group.
From the above illustration, only option C contains a Carbonxylic compound.
Answer:
I think this is probably the answer you are looking for.
Explanation:
https://youtu.be/PY431ZC5uDc
<h3>✽ - - - - - - - - - - - - - - - ~<u>Hello There</u>!~ - - - - - - - - - - - - - - - ✽</h3>
➷ It means that the electrons have absorbed extra energy
<h3><u>✽</u></h3>
➶ Hope This Helps You!
➶ Good Luck (:
➶ Have A Great Day ^-^
↬ ʜᴀɴɴᴀʜ ♡