Answer:
Option D, ketone
Explanation:
Since Jones reagent (CrO3/H2SO4) is a strong oxidizing agent and oxidize the secondary alcohol to ketone.
Example , isopropanol gets oxidized to propanone.
Primary Alcohol gets oxidized to Carboxylic acids.
<span>Day and night are not exactly of equal length at the time of the March and September equinoxes. The dates on which day and night are each 12 hours occur a few days before and after the equinoxes.</span>
Answer:
Explanation:
a) The forward reaction is exothermic, hence when temperature is increased the equilibrium shift towards the reactants side to get rid of the excess energy. This will mean that more reactants are produced decreasing yield
b) There are a fewer number of moles of gas on the right side compared to the left side (Just count the coefficients before each compound) so a higher pressure will mean that the equilibrium will shift towards the products side in order to decrease the pressure. This will mean that more products are formed increasing yield
c) When something is powdered it's surface area to volume ratio increases. A higher surface area means that the particles around it have more area to work on so the frequency of collisions will increase increasing the rate of reaction. This is why iron is powdered.
Answer : The mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.
Explanation : Given,
Mass of oxygen in sulfur dioxide = 3.49 g
Mass of sulfur in sulfur dioxide = 3.50 g
Mass of oxygen in sulfur trioxide = 9.00 g
Mass of sulfur in sulfur trioxide = 6.00 g
Now we have to calculate the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide.
Mass of oxygen per gram of sulfur for sulfur dioxide = 
Mass of oxygen per gram of sulfur for sulfur dioxide = 
and,
Mass of oxygen per gram of sulfur for sulfur trioxide = 
Mass of oxygen per gram of sulfur for sulfur trioxide = 
Thus, the mass of oxygen per gram of sulfur for sulfur dioxide and sulfur trioxide is, 0.997 g and 1.5 g respectively.