Explanation:
Let
= distance traveled while accelerating
= distance traveled while decelerating
The distance traveled while accelerating is given by



We need the velocity of the rocket after 30 seconds and we can calculate it as follows:

This will be the initial velocity when start calculating for the distance it traveled while decelerating.


Solving for
we get


Therefore, the total distance x is


- The net force is greatest at the position of maximum displacement
- The net force is zero when at the equilibrium position
Explanation:
The motion of a spring is a Simple Harmonic Motion, in which the displacement of the end of the spring is given by a periodic function of the form

where A is the amplitude (the maximum displacement), and
the angular frequency of the motion.
We can analyze the net force acting on the spring by looking at Hooke's law:

where
F is the net force
k is the spring constant
x is the displacement
From the equation, we notice immediately that:
- The net force is the greatest when the displacement x is the greates, so at the position in which the spring has maximum compression or stretching
- The net force is zero when the displacement x is zero, so when the spring crosses the equilibrium position
Learn more about forces:
brainly.com/question/8459017
brainly.com/question/11292757
brainly.com/question/12978926
#LearnwithBrainly
Answer:
<h2>9.8 m/s²</h2>
Explanation:
<h2>Since the ball rises for 2.5 s, the time to fall is 2.5 s. The acceleration is 9.8 m/s2 everywhere, even when the velocity is zero at the top of the path. Although the velocity is zero at the top, it is changing at the rate of 9.8 m/s² downward.</h2>
Answer:
-400km/hr
Explanation:
Velocity=displacement/time
=400/1
=400Km/hr
=-400km/hr (because west direction)