Answer:
356 N
Explanation:
Newton's second law of motion describes the relationship between an object's mass and the amount of force needed to accelerate it.
here there is a weight acting downwards on the object , yet it is accelerating upwards shows that there is a net force upwards
Applying Newtons second law of motion upwards ,
Force = mass *acceleration
Upward force - m*g = m *a
F_up= 20 *8 + 20 * 9.8
= 356 N
Upward force= 160 N
Answer:
0.014s
Explanation:
Given parameters:
mass of golf ball = 0.059kg
force applied = 290N
velocity = 69m/s
initial velocity = 0m/s
Unknown:
Time of contact = ?
Solution;
We know that momentum is the quantity of motion of body possess;
Momentum = mass x velocity
Momentum = 0.059 x 69 = 4.1kgm/s
Also; impulse is the effect of the force acting on a body;
impulse = force x time = momentum
So;
Force x time = momentum
Time =
=
= 0.014s
Answer:
a galaxy observed at a distance of 5 billion light-years
Answer: 24.97 kg
Explanation:
The gravitational force between two objects of masses M1, and M2 respectively, and separated by a distance R, is:
F = G*(M1*M2)/R^2
Where G is the gravitational constant:
G = 6.67*10^-11 m^3/(kg*s^2)
In this case, we know that
R = 0.002m
F = 0.0104 N
and that M1 = M2 = M
And we want to find the value of M, then we can replace those values in the equation to get
0.0104 N = (6.67*10^-11 m^3/(kg*s^2))*(M*M)/(0.002m)^2
(0.0104 N)*(0.002m)^2/(6.67*10^-11 m^3/(kg*s^2)) = M^2
623.69 kg^2 = M^2
√(623.69 kg^2) = M = 24.97 kg
This means that the mass of each object is 24.97 kg