The balanced equation for the above reaction is as follows;
C + H₂O ---> H₂ + CO
stoichiometry of C to H₂O is 1:1
1 mol of C reacts with 1 mol of H₂O
we need to find which is the limiting reactant
2 mol of C and 3.1 mol of H₂O
therefore C is the limiting reactant and H₂O is in excess.
stoichiometry of C to H₂ is 1:1
then number of H₂ moles formed are equal to C moles reacted
number of H₂ moles formed = 2 mol
Hope my answer helped you
Answer:
<h3>no it is not allowed</h3>
Explanation:
<h3>Liwis structure shows the elements symbol with dots thet represents valance electrons ; in second row elements their atomic number is 3 up to 10 , from Li up to Ne from their electron configuration their valance electron will be from 1 up to 8 respectivelly ,if lewis structure represents the element with it is symbol and dots that represents valance electron the second row elements cannot have more than an octet of valance electrons surrounding it.</h3>
<h3>I think it is help ful for you </h3>
Answer:
a. 0.182
b. 1.009
c. 1.819
Explanation:
Henderson-Hasselbach equation is:
pH = pKa + log [salt / acid]
Let's replace the formula by the given values.
a. 3 = 3.74 + log [salt / acid]
3 - 3.74 = log [salt / acid]
-0.74 = log [salt / acid]
10⁻⁰'⁷⁴ = 0.182
b. 3.744 = 3.74 + log [salt / acid]
3.744 - 3.74 = log [salt / acid]
0.004 = log [salt / acid]
10⁰'⁰⁰⁴ = 1.009
c. 4 = 3.74 + log [salt / acid]
4 - 3.74 = log [salt / acid]
0.26 = log [salt / acid]
10⁰'²⁶ = 1.819
Combustion can be defined as the reaction of a compound with oxygen. The enthalpy of combustion of octane is
for
.
<h3>What is the enthalpy of reaction?</h3>
The enthalpy of reaction is the amount of heat energy absorbed or lost by the molecules in the chemical reaction.
The enthalpy of combustion is the amount of heat energy released by the compound in the reaction with oxygen.
The reaction in which heat is liberated with the reaction of a compound with oxygen has an enthalpy of combustion, equivalent to the enthalpy of reaction.
The combustion of octane can be given as:

Thus, the reaction has combustion energy equivalent to the enthalpy of the reaction is
. Thus, option B is correct.
Learn more about enthalpy of reaction, here:
brainly.com/question/1657608