Emf = d (phi-B) / dt
<span>B dA/dt, where dA/dt is the area swept out by the wire per unit time. </span>
<span>0.88 V = (0.075 N/(A m)) (L)(4.20 m/s), so </span>
<span>L = (0.88 J/C) / [ (0.075 N s/C m)(4.2 m/s) ] = about 3 meters</span>
The correct answer to the question is: A) miles/hour and B) metre/ second.
EXPLANATION:
Before answering this question, first we have to understand speed.
The speed of a body is defined as the rate of distance travelled or the distance travelled by a body per unit time.
Hence, it is a derived quantity which is obtained from distance and time.
The unit of distance can be metre, miles, and the unit of time can be second, minutes or hour.
As speed is the distance covered per unit time, the perfect units will be miles/hour and metre/second.
Hence, the correct options are first and second.
Answer:
Neutrons
Explanation:
There are three particles that make up an atom, proton, neutron and electron. The mass of protons and neutrons is considered to be equal though in reality neutrons are heavier than protons; the mass of electrons is very less and ignored in the calculation of atomic mass.
Answer:
B. 10m/s
Explanation:
If a drone flies 8 m/s due East with respects to the wind and the wind is blowing 6 m/s due North, the speed of the drone with respect to the ground is its displacement.
Displacement is calculated using Pythagoras theorem.
d² = 8²+6²
d² = 64+36
d² = 100
Square root both sides
√d² = √100
d = 10m/s
Hence the distance of the drone with respect to the ground is 10m/s
Option B is correct