C and d are the right answers
The velocity of the tip of the second hand is 0.0158 m/s
Explanation:
First of all, we need to calculate the angular velocity of the second hand.
We know that the second hand completes one full circle in
T = 60 seconds
Therefore, its angular velocity is:

Now we can calculate the velocity of a point on the tip of the hand by using the formula

where
is the angular velocity
r = 15 cm = 0.15 m is the radius of the circle (the distance of the point from the centre of rotation)
Substituting,

Learn more about angular motion here:
brainly.com/question/9575487
brainly.com/question/9329700
brainly.com/question/2506028
#LearnwithBrainly
Answer:
ρ/ρ2 = 3 / R₀ the two densities are different
Explanation:
Density is defined as
ρ = M / V
As the nucleus is spherical
V = 4/3 π r³
Let's replace
ρ = A / (4/3 π R₀³)
ρ = ¾ A / π R₀³
b)
ρ2 = F / area
The area of a sphere is
A = 4π R₀²
ρ2 = F / 4π R₀²
ρ2 = F / 4π R₀²
Atomic number is the number of protons in the nucleon in not very heavy nuclei. This number is equal to the number of neutrons, but changes in heavier nuclei, there are more neutrons than protons.
Let's look for the relationship of the two densities
ρ/ρ2 = ¾ A / π R₀³ / (F / 4π R₀²)
ρ /ρ2 = 3 (A / F) (1 / R₀)
In this case it does not say that the nucleon number is A (F = A), the relationship is
ρ/ρ2 = 3 / R₀
I see that the two densities are different
Answer:
Max speed = 
Max acceleration = 
Explanation:
Given the description of period and amplitude, the SHM could be described by:

and its angular velocity can be calculated doing the derivative:

And therefore, the tangential velocity is calculated by multiplying this expression times the radius of the movement (3 m):
and is given in m/s.
Then the maximum speed is obtained when the cosine function becomes "1", and that gives:
Max speed = 
The acceleration is found from the derivative of the velocity expression, and therefore given by:

and the maximum of the function will be obtained when the sine expression becomes "-1", which will render:
Max acceleration = 
Answer:
Option B, Some of the cars' kinetic energy was converted to sound and heat energy.
Explanation:
In an elastic collision, no energy is lost during and after collision. Thus, it can be said that in an elastic collision both momentum and kinetic energy remains conserved.
While in non-elastic collision, kinetic energy of the system is lost. However, the momentum of the system is conserved. Generally, during and after collision some of the kinetic energy is lost as thermal energy, sound energy etc.
Hence, option B is correct