Answer:
The speed is 24 
Explanation:
A wave is a disturbance that propagates through a certain medium or in a vacuum, with transport of energy but without transport of matter.
The wavelength is the minimum distance between two successive points of the wave that are in the same state of vibration. It is expressed in units of length (m).
Frequency is the number of vibrations that occur in a unit of time. Its unit is s⁻¹ or hertz (Hz).
The speed of propagation is the speed with which the wave propagates in the middle, that is, the magnitude that measures the speed at which the wave disturbance propagates along its displacement. Relate wavelength (λ) and frequency (f) inversely proportionally using the following equation:
v = f * λ.
In this case, λ= 8 meter and f= 3 Hz
Then:
v= 3 Hz* 8 meter
So:
v= 24 
<u><em>The speed is 24 </em></u>
<u><em></em></u>
Answer:
3.31m/s
Explanation:
Angular momentum for 3s is



Moment if inertia is


Angular speed
ω = L/I

The speed of each ball is
V = ωL

Answer : (B) Prominence
Explanation :
A large, glittering and gaseous characteristic which is extending outward from the surface of the sun is called <em>Prominence</em>.
<em>Photosphere</em> is one of the layer of sun where the prominence are anchored and then they move into the corona of the sun.
<em>Corona</em> is a region in the surface of the sun which is the constituent of hot ionized gases (plasma).
The prominence consists of colder plasma and this prominence plasma is much more shining and denser as compared to coronal plasma.
Hence, the correct option is (B) Prominence.
Answer:
A -Added when in the same direction
Subtracted when in opposite directions.
Explanation:
Answer:
The correct option is;
Absolute zero
Explanation:
A Bose-Einstein condensate is known as the fifth state of matter which is made of a collection of ultra cooled atoms (at almost absolute zero degrees -273.15 °C) such that the there is very slight free energy within the atoms which results in almost no relative motion between the atoms. The atoms then combine forming clumps such that phenomena usually observed at the microscopic level such as wavefunction interference become observable at the microscopic level.