Scalar quantity are physical quantities that have just magnitude, not direction.
- It is always positive.
- Examples: Speed, distance
Answer:
-1.5m/s²
Explanation:
Acceleration can be thought of as [Change in Velocity]/[Change in time]. To find these changes, you simply subtract the initial quantity from the final quantity.
So for this question you have:
- V_i = 110m/s
- V_f = 80m/s
- t_i = 0s
- t_f = 20s
which means that the acceleration = (80-110)/(20-0)[m/s²] = (-30/20)m/s² = -1.5m/s²
Hydroelectricity is the best answer.
This is an article by the EIA, but the pie graph is the most helpful: https://www.eia.gov/energyexplained/?page=us_energy_home
<u>Answer</u>
1) A. 96 Candelas
2) A. Both of these types of lenses have the ability to produce upright images.
3) C. 5 meters
<u>Explanation</u>
Q1
The formula for calculation the luminous intensity is;
Luminous intensity = illuminance × square radius
Lv = Ev × r²
= 6 × 4²
= 6 × 16
= 96 Candelabra
Q2
For converging lenses, an upright image is formed when the object is between the lens and the principal focus while a diverging lens always forms and upright image.
A. Both of these types of lenses have the ability to produce upright images.
Q3
Luminous intensity = illuminance × square radius
square radius = Luminous intensity/ illuminance
r² = 100/4
= 25
r = √25
= 5 m
Max height occurs when v = 0.
v(t) = ds(t)/dt
v(t) = 80 - 32t
0 = 80 - 32t
t = 5/2
s(5/2) = 80(5/2) - 16(5/2)^2
s(5/2) = 100
Answer: 100 ft
96 = 80t - 16t²
t = 3, 2
(80 ± √256) / 32 using the quadratic equation.
v(2) = 16
v(3) = -16