(a) 
According to Newton's second law, the force experienced by each balloon is given by:
F = ma
where
m = 0.021 kg is the mass
a = 1.1 m/s^2 is the acceleration
Substituting, we found:

The electrostatic force between the two balloons can be also written as

where
k is the Coulomb's constant
Q is the charge on each balloon
r = 16 m is their separation
Since we know the value of F, we can find Q, the magnitude of the charge on each balloon:

(b)
electrons
The magnitude of the charge of one electron is

While the magnitude of the charge on one balloon is

This charge can be written as

where N is the number of electrons that are responsible for this charge. Solving for N, we find:

Explanation:
<u><em>Deviation</em><em> </em><em>:</em><em> </em></u><em> </em>
It means the difference between a expected value of a measurement or an observation vs the actual value.
<em><u>Incidence</u></em><em><u> </u></em><em><u>:</u></em>
A straight line, ray of light, etc.., hits a surface at a point.
Answer:
The elevator's free-body diagram has three forces, the force of gravity, a downward normal force from you, and an upward force from the tension in the cable holding the elevator. The combined system of you + elevator has two forces, a combined force of gravity and the tension in the cable.
Explanation:
Answer:
v₁ = 37.5 cm / s
Explanation:
For this exercise we can use that angular and linear velocity are related
v = w r
in the case of the spool the angular velocity for the whole system is constant,
They indicate the linear velocity v₀ = 25.0 cm / s for a radius of r₀ = 1.00 cm,
w = v₀ /r₀
for the outside of the spool r₁ = 1.5 cm
w = v₁ / r₁1
since the angular velocity is the same we set the two expressions equal
v1 =
let's calculate
v₁ =
v₁ = 37.5 cm / s
Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back

From the question we are told
If the average velocity during the athlete's walk back to the starting line in Guided Example 2.5 is – 1.50 m/s,
Generally the equation Time spent is mathematically given as
T=\frac{d}{v}
Therefore

Hence ,From the Guide there are other parameters which with this equation will give the exact time the athlete's walk back

For more information on this visit
brainly.com/question/22271063