Answer:
See explanation below.
Explanation:
Dipoles are molecules that have partial charges. It happens because of the difference in electronegativity of the elements. This property is the tendency that the atom has to take the electron to it, so, in the covalent bond, the shared pair of electrons is easily found at the more electronegativity atom, and so, it has a partial negative charge, and the other, a partial positive charge. This is a natural dipole.
If the difference of electronegativity is 0, or extremely close to 0, then the molecule is nonpolar, and so the molecule doesn't have partial charges. But, to be joined together and form the substance, the partial charge must be induced, so it's an induced dipole.
Answer:
The other colors of the electromagnetic spectrum are absorbed by the substance and not reflected. If you were to look at it in infared or unltraviolet it would reflect different colors than those of the visible spectrum.
Explanation:
Answer:
14.77 mol.
Explanation:
- It is known that every 1.0 mole of compound or element contains Avogadro's number (6.022 x 10²³) of molecules or atoms.
<u><em>Using cross multiplication:</em></u>
1.0 mole of He contains → 6.022 x 10²³ atoms.
??? mole of He contains → 8.84 x 10²⁴ atoms.
<em>∴ The no. of moles of He contains (8.84 x 10²⁴ atoms) </em>= (1.0 mol)(8.84 x 10²⁴ atoms)/(6.022 x 10²³ atoms) =<em> 14.77 mol.</em>
To get the concentration of the second solution let us use the following formulae
C1V1=C2V2 where C1 is concentration of first solution and V1 is the volume of solution first solution. on the other hand C2 is the concentration of second solution and V2 is the volume of second solution.
therefore
0.8×2=(2+10)×C2
1.6 =12×C2
1.6/12=C2
C2 = 0.1333mg/mL
The right answer for the question that is being asked and shown above is that: "(2) the cathode in a voltaic cell and the anode in an electrolytic cell." At the status of electrode does oxidation occur in a voltaic cell and in an electrolytic cell is that the cathode in a voltaic cell and the anode in <span>an electrolytic cell</span>