Answer:
2KClO3 —> 2KCl + 3O2
The coefficients are 2, 2, 3
Explanation:
From the question given above, we obtained the following equation:
KClO3 —> 2KCl + 3O2
The above equation can be balance as follow:
There are 2 atoms of K on the right side and 1 atom on the left side. It can be balance by putting 2 in front of KClO3 as shown below:
2KClO3 —> 2KCl + 3O2
Now, the equation is balanced.
Thus, the coefficients are 2, 2, 3
When magnesium is burned, it reacts with oxygen in air not with the fire. The fire is the energy needed for the reaction to happen. Magnesium reacts with oxygen forming magnesium oxide. The light emitted from the reaction is because the reaction produced a lot of heat.
Answer: B.
The rate of the nuclear reaction increases, but the rate of the chemical reaction remains the same
Explanation:
Answer:
If there is 0.66 moles of iron(III)oxide produced, there reacte 0.99 moles of oxygen (O2)
Explanation:
Step 1: Data given
Number of moles iron (III) oxide (Fe2O3) = 0.66 moles
Step 2: The balanced equation
4Fe + 3O2 → 2Fe2O3
Step 3: Calculate moles of oxygen (O2)
For 4 moles Fe consumed, we need 3 moles of O2 to produce 2 moles of Fe2O3
For 0.66 moles Fe2O3 produced, we need 3/2 * 0.66 = 0.99 moles of O2
If there is 0.66 moles of iron(III)oxide produced, there reacte 0.99 moles of oxygen (O2)