False. Velocity is a vector and is measured in m/s (in SI, anyway).
<span>We can assume that the horizontal surface has no friction and the pulley is massless. We can use Newton's second law to set up an equation.
F = Ma
F is the net force
M is the total mass of the system
a is the acceleration
a = F / M
a = (mb)(g) / (ma + mb)
a = (6.0 kg)(9.80 m/s^2) / (6.0 kg + 14.0 kg)
a = 58.8 N / 20 kg
a = 2.94 m/s^2
The magnitude of the acceleration of the system is 2.94 m/s^2</span>
Answer:
11.6532 x 10⁻¹¹ J or 7.3 MeV is given off
Explanation:
Mass of an alpha particle = 4.0026u, ∴ mass of three = 12.0078u
Find the difference in mass.
Mass of three alpha - Mass of Carbon nucleus
12.0078u - 12u = 0.0078u
Since 1u = 1.66 x 10⁻²⁷ kg
Therefore, 0.0078u = 1.2948 x 10⁻²⁷
Now that we know Mass(m) = 1.2948 x 10⁻²⁷ and Speed (c) 3 x 10⁸ m²s⁻²
Formular for Energy ==> E₀ = mc²
E = (1.2948 x 10⁻²⁷) (3 x 10⁸ m²s⁻²)²
E = (1.2948 x 10⁻²⁷) (9 x 10¹⁶) J
E = 11.6532 x 10⁻¹¹ J
Or, if you need your energy in MeV
1 MeV = 1.60x10⁻¹³ J
Just do the conversion by dividing 11.6532 x 10⁻¹¹ J by 1.60x10⁻¹³ J
It will give you 7.3 MeV
Speed = d/t
d = 200, t = 10
200/10 = 20
Solution: 20 m/s