Water decomposes when electrolyzed to produce hydrogen and oxygen gas. If 2.5 grams of water were decomposed 1.04 grams of oxygen will be formed.
BCA table:
2
O ⇒
+ 
B 0.13 0 + 0
C -0.13 0.065 + 0.065
A 0 0.065
Explanation:
Balanced equation for water decomposition into hydrogen and oxygen gases
2
O ⇒
+ 
B 0.13 0 + 0
C -0.13 0.065 + 0.065
A 0 0.065
Number of moles of water = 
mass = 2.5 grams
atomic mass= 18 grams
number of moles can be known by putting the values in the formula,
n = 
= 0.13 moles
2 moles of water gives one mole of oxygen on decomposition
so, 0.13 moles of water will give x moles of oxygen on decompsition
= 
x = 0.065 moles of oxygen will be formed.
moles to gram will be calculated as
mass =number of moles x atomic mass
= 0.065 x 16
= 1.04 grams of oxygen.
Assuming the conditions of the reaction are maintained and appropriate for the reaction to still occur, the reaction rate can be affected by increasing the concentration of the reagents used in a reaction. It will speed it up.
Answer:
4.5g/mL
Explanation:
Given parameters:
Mass of ball = 36g
Volume of the ball = 8mL
Unknown:
Density of the ball = ?
Solution:
Density is the mass per unit volume of a substance.
Density =
So;
Density =
= 4.5g/mL
Its the other way around actually. Benzoic acid is stronger than acetic acid because the electron-donating inductive effect (+I) by the alkyl group on acetic acid destabilise the conjugate base of acetic acid.
hope this helps :)
MgCl2(s) + H2O(l) → MgO(s) + 2 HCl(g)
Using the standard enthalpies of formation given in the source below:
(−601.24 kJ) + (2 x −92.30 kJ) − (−641.8 kJ) − (−285.8 kJ) = +141.76 kJ
So:
MgCl2(s) + H2O(l) → MgO(s) + 2 HCl(g), ΔH = +141.76 kJ