Answer:
If the car comes to a sudden stop, your body tends to keep moving forward.
Explanation:
Answer:
(a) The magnitude of the electric dipole moment is 1.68 x 10⁻¹⁴ C.m
(b) The difference between the potential energies ΔU, is 4.6704 x 10⁻¹¹ J
Explanation:
Given;
magnitude of charge, q = 2 nC = 2 x 10⁻⁹ C
distance of separation, d = 8.4 μm = 8.4 x 10⁻⁶ m
strength of electric field, E = 1390 N/C
(a) the magnitude of the electric dipole moment
p = qd
p = (2 x 10⁻⁹ C)(8.4 x 10⁻⁶ m)
p = 1.68 x 10⁻¹⁴ C.m
(b) the difference between the potential energies for dipole orientations parallel and anti-parallel to E
ΔU = U(180) - U(0)
ΔU = 2pE
ΔU = 2(1.68 x 10⁻¹⁴ )(1390)
ΔU = 4.6704 x 10⁻¹¹ J
Answer: Gravity has an effect of a gravitational pull, which keeps things on the ground instead of floating around like we are in space.
Answer:
k1 + k2
Explanation:
Spring 1 has spring constant k1
Spring 2 has spring constant k2
After being applied by the same force, it is clearly mentioned that spring are extended by the same amount i.e. extension of spring 1 is equal to extension of spring 2.
x1 = x2
Since the force exerted to each spring might be different, let's assume F1 for spring 1 and F2 for spring 2. Hence the equations of spring constant for both springs are
k1 = F1/x -> F1 =k1*x
k2 = F2/x -> F2 =k2*x
While F = F1 + F2
Substitute equation of F1 and F2 into the equation of sum of forces
F = F1 + F2
F = k1*x + k2*x
= x(k1 + k2)
Note that this is applicable because both spring have the same extension of x (I repeat, EXTENTION, not length of the spring)
Considering the general equation of spring forces (Hooke's Law) F = kx,
The effective spring constant for the system is k1 + k2
Answer:
The last option, It is upside down
Explanation:
Got it right on Edge