Answer:
Distance of something it can be any type of distance
The mole fraction of HNO3 is 0.225
<u>Explanation:</u>
<u>1.</u>Given data
Density = 1.429 /ml
Mass% = 63.01 g HNO3 / 100g of solution
The mass of 63.01 g is in 100 / 1.142 /ml of solution
Or 63.01 g in 55.7 mL
Molarity = 15.39 moles / L
Mass of water in 100g = 100 - 63.01=36.99 g
So 63.01 grams in 36.99 grams of water
So mass of HNO3 in 1000grams of water = 63.01* x 1000 / 36.99 = 1703
Moles of HNO3 in 1000g = 1703 / 63.01 = 27.03 moles
Molality = 27.03 molal (mole / Kg)
Mole fraction = Mole of HN03 / Moles of water + mole of HNO3
Mole of water = 62/ 18 = 3.44
Moles of HNO3 = 63.01 / 63.01 = 1.000
Mole fraction = 1.000 / 3.44 + 1.000 = 0.225
The mole fraction of HNO3 is 0.225
Answer: The forward and reverse reactions eventually reach the same rate.
Explanation:
The reactions which do not go on completion and in which the reactant forms product and the products goes back to the reactants simultaneously are known as equilibrium reactions.
Equilibrium state is the state when reactants and products are present but the concentrations does not change with time.
The equilibrium is dynamic in nature and the reactions are continuous in nature. Rate of forward reaction is equal to the rate of backward reaction and it appears as it has stopped.
I would use the following steps:
- Write the <em>balanced chemical equation</em> for the reaction.
- Use the molar mass to <em>convert the mass of the reactant to moles</em>.
- Use the molar ratio of product:reactant from the balanced chemical equation to <em>convert moles of reactant to moles of product</em>.
- Use the molar mass of the product to <em>convert moles of product to mass of product</em>.
You can use the diagram below to remind you of the importance of the <em>molar ratio</em> in mass-mass conversions
You must get over the mole “hill” to make the conversion.