Answer:
260.34g
Explanation:
First, you need to know what angelic acid is comprised of. It is written as C₅H₈O₂.
In order to solve for the mass of 2.6 moles of angelic acid, you need the mass of 1 mole of angelic acid. This can be found by adding the masses from the periodic table, like shown below:
5 carbon atoms = (5)(12.01g) = 60.05g
8 hydrogen atoms = (8)(1.01) = 8.08g
2 oxygen atoms = (2)(16) = 32g
angelic acid = 60.05 + 8.08 + 32 = 100.13g
Then, set up a basic stoichiometric equation and solve. The units should cancel out.

The balanced equation of the reaction is:
O3(g) + NO (g) → O2 (g) + NO2 (g)
Then the ratios of reaction is 1 mol O3 : 1 mol NO : 1 mol O2 : 1 mol NO2
If you have initially 0.05 M of O3 and 0.02 M of NO, the reaction will end when all the NO is consumed.
The by the stoichiometry 0.02 mol of O3 will be consumed in 8 seconds.
And the rate of reaction is change in concetration divided by the time.
The change in concentration in O3 is 0.02 M
Then, the rate respect O3 is 0.02 M / 8 seconds = 0.0025 M/s
Answer:
A chemical change has occurred, with energy being given off.
Explanation:
The liquids mix and the stick gives off energy in light form