Answer:
9.9652g of water
Explanation:
The establishment of the liquid-vapor equilibrium occurs when the vapour of water is equal to vapour pressurem 26.7 mmHg. Using gas law it is possible to know how many moles exert that pressure, thus:
n = PV / RT
Where P is pressure 26,7 mmHg (0.0351atm), V is volume (1.350L), R is gas constant (0.082 atmL/molK) and T is temperature (27°C + 273,15 = 300.15K)
Replacing:
n = 0.0351atm×1.350L / 0.082atmL/molK×300.15K
n = 1.93x10⁻³ moles of water are in gaseous phase. In grams:
1.93x10⁻³ moles × (18.01g / 1mol) = <u><em>0.0348g of water</em></u>
<u><em /></u>
As the initial mass of water was 10g, the mass of water that remains in liquid phase is:
10g - 0.0348g = <em>9.9652g of water</em>
<em />
I hope it helps!
I had to look for the options and here is my answer:
The two requirements for nuclear fusion that are needed to be met in order for the elements hydrogen and helium fuse to make heavier elements are extremely high temperatures and density. Hope this helps.
Answer:
What group of people ay?
Maybe look at their differences in appearance: height, size, weight, skin color, clothing choice?
It is called exothermic reaction because it releases heat and light and it is called combustion reaction because it is reacting and is being oxidised by O2 to MgO.
It can also be called as oxidation reaction since Mg is oxidised to MgO.
Answer:
Explanation:
2C₂H₅OH = C₄H₆ + 2H₂O + H₂
2 mole 1 mole
molecular weight of ethyl alcohol
mol weight of C₂H₅OH = 46 gm
mol weight of C₄H₆ 54 gm
540 gm of C₄H₆ = 10 mole
10 mole of C₄H₆ will require 20 mol of ethyl alcohol .
20 mole of ethyl alcohol = 20 x 46
= 920 gm
ethyl alcohol required = 920 gm .