Answer:
The products are carbon dioxide and water
Explanation:
Step 1: Data given
Combustion = a reaction in which a substance reacts with oxygen gas, releasing energy in the form of light and heat. Combustion reactions must involve O2 as one reactant.
Step 2: The complete combustion of C3H7OH:
For the combustion of 1-propanol, we need O2.
The products of this combustion are CO2 and H2O.
C3H7OH + O2→ CO2 + H2O
On the left side we have 3x C (in c3H7OH), on the right side we have 1x C (in CO2). To balance the amount of C, we have to multiply CO2 on the right side by 3
C3H7OH + O2→ 3CO2 + H2O
On the left side we have 8x H (in C3H7OH) and 2x on the right side (in H2O). To balance the amount of H, we have to multiply H2O, on the right side by 4.
C3H7OH + O2→ 3CO2 + 4H2O
On the left side we have 3x O (1x in C3H7OH and 2x in O2), on the right side we have 10x O (6x in CO2 and 4x in H2O).
To balance the amount of O on both sides, we have to multiply C3H7OH by 2, multiply O2 by 9. Then we have to multiply 3CO2 by 2 and 4H2O by 2. Now the equation is balanced.
2C3H7OH + 9O2→ 6CO2 + 8H2O
For 2 moles propanol, we need 9 moles of O2 to produce 6 moles of CO2 and 8 moles Of H2O
The products are carbon dioxide and water
Answer:
2Fe(s) + 3O2(g) --------> 2FeO3(s)
Explanation:
According to the question, a battery was used to light the steel wool by bringing the terminals very close together. When the battery came into contact with the steel wool, current was sent out through the thin wire. This caused the iron to heat up quite well.
Iron reacts with oxygen under these conditions as follows;
2Fe(s) + 3O2(g) --------> 2FeO3(s)
This is the chemical reaction that occurs when the steel wool is set on fire.
Answer:
d) V = 91.3 L
Explanation:
Given data:
Volume of nitrogen = ?
Temperature = standard = 273.15 K
Pressure = standard = 1 atm
Number of atoms of nitrogen = 2.454×10²⁴ atoms
Solution:
First of all we will calculate the number of moles of nitrogen by using Avogadro number.
1 mole = 6.022×10²³ atoms
2.454×10²⁴ atoms × 1 mol / 6.022×10²³ atoms
0.407×10¹ mol
4.07 mol
Volume of nitrogen:
PV = nRT
1 atm × V = 4.07 mol ×0.0821 atm.L /mol.K ×273.15 K
V = 91.3 atm.L /1 atm
V = 91.3 L
They should identify the confounding variable.
Some condition that is not examined by the scientist might alter the experiment result. That condition is called confounding variable. If the method of the experiment same but result is very different, there should be unidentified confounding variable. It could be air humidity, temperature, ventilation, light, time of the year or anything that might not be seen by naked eye.
Try to redo the experiment with controlling variable as much as possible.
It is harder to remove an electron from fluorine than from carbon because the size of the nuclear charge in fluorine is larger than that of carbon.
The energy required to remove an electron from an atom is called ionization energy.
The ionization energy largely depends on the size of the nuclear charge. The larger the size of the nuclear charge, the higher the ionization energy because it will be more difficult to remove an electron from the atom owing to increased electrostatic attraction between the nucleus and orbital electrons.
Since fluorine has a higher size of the nuclear charge than carbon. More energy is required to remove an electron from fluorine than from carbon leading to the observation that; it is harder to remove an electron from fluorine than from carbon.
Learn more: brainly.com/question/16243729