Answer:
option b. B3+
Explanation:
Boron takes the 5th position on the periodic table, therefore it has 5 electrons....2 on the inside and 3 on the outside. when it lost it 3 external electrons, it become positively charged with the amount of electron it loses.
Answer : The value of equilibrium constant for this reaction at 328.0 K is 
Explanation :
As we know that,

where,
= standard Gibbs free energy = ?
= standard enthalpy = 151.2 kJ = 151200 J
= standard entropy = 169.4 J/K
T = temperature of reaction = 328.0 K
Now put all the given values in the above formula, we get:


The relation between the equilibrium constant and standard Gibbs free energy is:

where,
= standard Gibbs free energy = 95636.8 J
R = gas constant = 8.314 J/K.mol
T = temperature = 328.0 K
K = equilibrium constant = ?
Now put all the given values in the above formula, we get:


Therefore, the value of equilibrium constant for this reaction at 328.0 K is 
The more focused the rays are, the more energy an area receives, and the warmer it is. The lowest latitudes get the most energy from the Sun. The highest latitudes get the least. The difference in solar energy received at different latitudes drives atmospheric circulation.
Valency is the number of electrons lost or gained by an atom to attain an stable configuration. Valency is important when writing the formula of chemical compounds in chemistry. Strontium has a valency of 2 while sulfite ion (radicle) has a valency of 2. Therefore, the chemical formula of strontium sulfite is written as SrSO3.