Answer:
The spring constant = 104.82 N/m
The angular velocity of the bar when θ = 32° is 1.70 rad/s
Explanation:
From the diagram attached below; we use the conservation of energy to determine the spring constant by using to formula:
Also;
Thus;
where;
= deflection in the spring
k = spring constant
b = remaining length in the rod
m = mass of the slender bar
g = acceleration due to gravity
Thus; the spring constant = 104.82 N/m
b
The angular velocity can be calculated by also using the conservation of energy;
Thus, the angular velocity of the bar when θ = 32° is 1.70 rad/s
From the information given,
diameter of ornament = 8
radius = diameter/2 = 8/2
radius of curvature, r = 4
Recall,
focal length, f = radius of curvature/2 = 4/2
f = 2
Recall,
magnification = image d
It is a theory on a show that people try to solve.
Answer:
=0.855V
Explanation:
The induced voltage can be calculated using below expression
E =B x dA/dt
Where dA/dt = area
B= magnetic field = 6.90×10-5 T.
We were given speed of 885 km/h but we will need to convert to m/s for consistency of unit
speed = 885 km/h
speed = 885 x 10^3 m/hr
speed = 885 x 10^3/60 x60 m/s
speed = 245.8 m/s
If The aircraft wing sweep out" an area
at t= 50.4seconds then we have;
dA/dt = 50.4 x 245.8
= 123388.32m^2/s
Then from the expression above
E =B x dA/dt substitute the values of each parameters, we have
E = 6.90 x 10^-5 x 12388.32 V
E =0.855V
Hence, the average induced voltage between the tips of the wings is =0.855V