1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alenkasestr [34]
3 years ago
9

Describe what a high and low frequency electromagnetic wave look like:

Physics
1 answer:
Ghella [55]3 years ago
4 0
A high electromagnetic wave has short, very fast, frequent waves.

a low electromagnetic wave has long, very slow, infrequent waves.

hope this helps! pls mark brainliest!
You might be interested in
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
3 years ago
A car drives off a cliff next to a river at a speed of 30 m/s and lands on the bank on theother side. The road above the cliff i
dezoksy [38]

Answer:1.301 s

Explanation:

Given

Initial Velocity(u)=30 m/s

Height of cliff=8.3 m

Time taken to cover 8.3 m

h=ut+\frac{at^2}{2}

here Initial vertical velocity is 0

8.3=\frac{gt^2}{2}

t^2=1.69

t=1.301 s

Horizontal distance

R=u\times t

R=30\times 1.301=39.04 m

7 0
3 years ago
an object is dropped from a height of 25 meters. at what velocity will it hit the ground? a 7.0 m/s b 11 m/s c 22 m/s d 49 m/s e
kipiarov [429]
Assuming that the object starts at rest, we know the following values:

distance = 25m
acceleration = 9.81m/s^2 [down]
initial velocity = 0m/s

we want to find final velocity and we don't know the time it took, so we will use the kinematics equation without time in it:

Velocity final^2 = velocity initial^2 + 2 × acceleration × distance

Filling everythint in, we have:

Vf^2 = 0^2 + (2)(-9.81)(-25)
The reason why the values are negative is because they are going in the negative direction

Vf^2 = 490.5

Take the square root of that

Final velocity = 22.15m/s which is answer c
6 0
3 years ago
. Each valve A, B, and C, when open, releases water into a tank at its own constant rate. With all three valves open, the tank f
olasank [31]

Answer:

Time taken by A and B is 1.2 hr.

Explanation:

Given that

Time taken by tank when all(A+B+C) are open = 1 hr

Time taken by tank when A+C are open = 1.5 hr

Time taken by tank when B+C are open = 2 hr

If we treat as filling of tank is a work then

Work = time x rate

Lets take work is 1 unit

1 = 1(1/a+1/b+1/c)          ---------1

1 = 1.5(1/a+1/c)           ----------2

1 = 2(1/b+1/c)             --------3

From equation 1 and 3

1=1(1/a+1/2)

a=2

Form equation 2

1 = 1.5(1/2+1/c)

c=6

From equation 3

 1 = 2(1/b+1/6)  

b=3

So time taken by

A is alone to fill tank is 2 hr

B is alone to fill tank is 3 hr

C is alone to fill tank is 6 hr

So time\ taken\ by\ A\ and\ B =\dfrac{2\times 3}{2+3} hr

Time taken by A and B is 1.2 hr.

7 0
3 years ago
The discovery of which particle proved that the atom is not indivisible?
Blababa [14]
Maybe cuz your fat fat biches
8 0
4 years ago
Other questions:
  • suppose you walk toward the rear of a moving train describe your motion as seen from a reference point on the train then describ
    5·1 answer
  • How does science restore diversity to areas where human activity has interfered with the natural structure of a habit/ecosystem?
    6·1 answer
  • How am I supposed to solve this?
    7·2 answers
  • The term pressure most nearly refers to which of the following?
    13·2 answers
  • What are the density, specific gravity and mass of the air in a room whose dimensions are 4 m * 6 m * 8 m at 100 kPa and 25 C.
    6·1 answer
  • What is the best way to dress for an outdoor trip in cold weather?
    8·2 answers
  • The second-order dark fringe in a single-slit diffraction pattern is 1.40 mm from the center of the central maximum. Assuming th
    5·1 answer
  • A spring has a length of 0.270 m when a 0.300 kg mass hangs from it, and a length of 0.750 m when a 2.80 kg mass hangs from it.
    5·1 answer
  • Two objects, A and B, are in contact with one another. Initially, the temperature of A is 50 °C and the temperature of B is 100
    7·1 answer
  • Which metals have similar chemical properties? Check all that apply.
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!