<span>Mass of nitrogen = 14.0067
</span>
Mass of oxygen = 15.9994
In this compound nitrogen = 36.86 /
14.0067 = 2.63
<span>And oxygen = 63.14 / 15.9994 = 3.95 <span>
now we have: N----- 2.63 and O----3.95
by dividing both with the smallest number we get
</span></span>
<span>N-------2.63/2.63 = 1<span>
<span>O-------3.95/2.63 = 1.5
To get whole numbers we multiply both by 2
</span></span></span>
N= 1 x 2 = 2
And O = 1.5 x 2= 3
<span>So, the empirical formula is N</span>₂O₃.
<span>In the Bronsted-Lowry model of acids and bases, a(n) _acid____ is a hydrogen donor and a(n) _base____ is a hydrogen acceptor.</span>
Answer: A pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Explanation:
Given : Mass of oxygen = 0.023 g
Volume = 31.6 mL
Convert mL into L as follows.

Temperature = 
As molar mass of
is 32 g/mol. Hence, the number of moles of
are calculated as follows.

Using the ideal gas equation calculate the pressure exerted by given gas as follows.
PV = nRT
where,
P = pressure
V = volume
n = number of moles
R = gas constant = 0.0821 L atm/mol K
T = temperature
Substitute the value into above formula as follows.

Thus, we can conclude that a pressure of 0.681 atm would be exerted by 0.023 grams of oxygen
if it occupies 31.6 mL at
.
Answer:
The correct option is D
Explanation:
Normally, beta-oxidation of fatty acid occurs in the mitchondrial matrix, however, when the fatty acid chains are too long, the beta-oxidation occurs in the peroxisomes <u>where the oxidation is not attached to ATP synthesis but rather transferred (i.e high energy electrons are transferred) to O₂ to form hydrogen peroxide</u> (H₂O₂). This is the major difference between the beta-oxidation that occurs in the peroxisomes to that which occurs in the mitochondria.
1.3 x 10¹⁵ : 1.2 x 10⁹ = 1.083 x 10⁶