To summarize, an object moving in uniform circular motion is moving around the perimeter of the circle with a constant speed<span>. While the </span>speed<span> of the object is</span>constant<span>, its </span>velocity<span> is </span>changing<span>. </span>Velocity<span>, being a vector, has a </span>constant<span>magnitude </span>but<span> a </span>changing<span> direction.</span>
Answer:
Mass and velocity.
Explanation:
Kinetic energy <u>is the energy that an object has due to its movement</u>, mathematically it is represented as follows:

where
is the mass of the object, and
is its velocity at a given point in time.
So we can see that to find the kinetic energy just before the ball hits the gound, we need the quantities:
- mass of the ball
- velocity of the ball before it hits the ground
With the knowledge of these two quantities the kinetic energy of the ball before touching the gound can be determined.
Respuesta:
0,0560 cal / gºC.
Explicación:
Cantidad de calor; (Q)
Q = mcΔt; Δt = t2 - t1
m = masa, c = capacidad calorífica específica; Δt = cambio de temperatura
c de agua = 1 cal / gºC
c de aluminio = 0,22 cal / gºC
QTotal = Q de agua + Q de aluminio
Q de agua = 450 * 1 * (26 - 23) = 1350 cal
Q de aluminio = 60 * 0.22 * (26 - 23) = 39.6 cal
QTotal = 1350 + 39,6 = 1389,6 cal
Calor perdido = calor ganado
QTotal = calor perdido
- 1389,6 = 335,2 * c * (26 - 100)
-1389,6 = −24804,8 * c
c = 1389,6 / 24804,8
c = 0,056021 cal / gºC.
Capacidad calorífica específica de la plata = 0,0560 cal / gºC.
The resistance of the thermometer at room temperature is 15.04 ohms.
<h3 />
<h3>What is a resistance thermometer?</h3>
A resistance thermometer is a type of thermometer that measures temperature through a change in resistance.
To calculate the resistance of the thermometer at room temperature, we use the formula below.
Formula:
- 100/27 = 2/(x-14.5)..............Eqquation 1
Where:
- x = Resistance of the thermometer at room temperature
Make x the subject of the equation
- x = [(27×2)/100]+14.5
- x = (54/100)+14.5
- x = 0.54+14.5
- x = 15.04 ohms.
Hence, The resistance of the thermometer at room temperature is 15.04 ohms.
Learn more about thermometers here: brainly.com/question/1531442
Answer:
Explanation:
Point beneath you forms a beautiful iridescent green
refractive index of Gasoline 
Wavelength of Green light is 
Here light first traverse from air(n=1) to gasoline , it reflects from front surface of gasoline(n=1.38) so it suffers a phase change. After this light reflect from rear surface of gasoline and there is a decrease in refractive index(n=1.38 to n=1.33), so there is no phase change occurs .
For constructive interference

here t= thickness of gasoline film
n=refractive index
for 

