<span>t^2 = 1/4.9 </span>
<span>t = 0.45 sec
answer:</span><span>1 - 4.9t^2 = 0 </span>
Answer:
Part A) the angular acceleration is α= 44.347 rad/s²
Part B) the angular velocity is 195.13 rad/s
Part C) the angular velocity is 345.913 rad/s
Part D ) the time is t= 7.652 s
Explanation:
Part A) since angular acceleration is related with angular acceleration through:
α = a/R = 10.2 m/s² / 0.23 m = 44.347 rad/s²
Part B) since angular acceleration is related
since
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(3.4 s - 2.8 s) = 44.88 m/s
since
ω = v/R = 44.88 m/s/ 0.230 m = 195.13 rad/s
Part C) at t=0
v = v0 + a*(t-t0) = 51.0 m/s + (-10.2 m/s²)*(0 s - 2.8 s) = 79.56 m/s
ω = v/R = 79.56 m/s/ 0.230 m = 345.913 rad/s
Part D ) since the radial acceleration is related with the velocity through
ar = v² / R → v= √(R * ar) = √(0.23 m * 9.81 m/s²)= 1.5 m/s
therefore
v = v0 + a*(t-t0) → t =(v - v0) /a + t0 = ( 1.5 m/s - 51.0 m/s) / (-10.2 m/s²) + 2.8 s = 7.652 s
t= 7.652 s
Solution :
When the spacecraft is at halfway point, the distance from the Earth as well as Mars are same. We have to account the masses of the planets. The gravitational force that is exerted by the Earth is greater because of its combined mass with the space probe.
The mass of Earth is greater than the mass of Mars. Therefore, the force of Earth is more than Mars.
Work with your units:
1 watt-hour = 1 (joule/second) · (hour) = 1 (joule-hour / second)
(1 joule-hour/sec) · (3600 sec/hour) = 3600 joules
So 1 watt-hour = 3,600 joules
The answer is d.5 your welcome