Answer:
An object at rest does not move and an object in motion does not change its velocity, unless an external force acts upon it
Explanation:
This statement is also known as Newton's first law, or law of inertia.
It states that the state of motion of an object can be changed only if there is an external force (different from zero) acting on it: therefore
- If an object is at rest, it will remain at rest if there is no force acting on it
- If an object is moving, it will continue moving at constant velocity if there is no force acting on it
This phenomenon can be also understood by looking at Newton's second law:
F = ma
where
F is the net force on an object
m is the mass
a is the acceleration
If the net force is zero, F = 0, the acceleration of the object is also zero, a = 0: therefore, the velocity of the object does not change, and it will continue moving at the same velocity (which can be zero, if the object was at rest).
Answer:
The velocity of the ball is 5 m/s to the left.
Explanation:
-25kg*m/s divided by 5 kg gives
speed of -5 m/s
The velocity of the ball is 5 m/s to the left.
The question is incomplete, the complete question is;
A body initially at a all 100 degree centigarde cools to 60 degree centigarde in 5 minutes and to 40 degree centigarde in 10 minutes . What is the temperature of surrounding? What will be the temperature in 15 minutes?
Answer:
See explanation
Explanation:
From Newton's law of cooling;
θ1 - θ2/t = K(θ1 + θ2/2 - θo]
Where;
θ1 and θ2 are initial and final temperatures
θo is the temperature of the surroundings
K is the constant
t is the time taken
Hence;
100 - 60/5 = K(100 + 60/2 - θo)
100 - 40/10 = K(100 + 40/2 - θo)
8= (80 - θo)K -----(1)
6= (70 - θo)K -----(2)
Diving (1) by (2)
8/6 = (80 - θo)/(70 - θo)
8(70 - θo) = 6(80 - θo)
560 - 8θo = 480 - θo
560 - 480 = -θo + 8θo
80 = 7θo
θo = 11.4°
Again from Newton's law of cooling;
θ = θo + Ce^-kt
Where;
t= 0, θ = 60° and θo = 11.4°
60 = 11.4 + C e^-K(0)
60 - 11.4 = C
C= 48.6°
To obtain K
40 = 11.4 + 48.6e^-10k
40 -11.4 = 48.6e^-10k
28.6/48.6 = e^-10k
0.5585 = e^-10k
-10k = ln0.5585
k= ln0.5585/-10
K= 0.0583
Hence, the temperature in 15 minutes;
θ= 11.4 + 48.6e^(-0.0583 × 15)
θ= 31.7°
Answer:
Explanation:
12.)
A. Opposite poles attract
B. Same poles repel
13.)
IDK
So, the speed of the ball after 2 seconds after free fall is <u>20 m/s</u>.
<h3>Introduction</h3>
Hi ! I'm Deva from Brainly Indonesia. In this material, we can call this event "Free Fall Motion". There are two conditions for free fall motion, namely falling (from top to bottom) and free (without initial velocity). Because the question only asks for the final velocity of the ball, in fact, we may use the formula for the relationship between acceleration and change in velocity and time. In general, this relationship can be expressed in the following equation :

With the following conditions :
- a = acceleration (m/s²)
= speed after some time (m/s)
= initial speed (m/s)- t = interval of time (s)
<h3>Problem Solving</h3>
We know that :
- a = acceleration = 9,8 m/s² >> because the acceleration of a falling object is following the acceleration of gravity (g).
= initial speed = 0 m/s >> the keyword is free fall- t = interval of time = 2 s
What was asked :
= speed after some time = ... m/s
Step by step :




So, the speed of the ball after 2 seconds after free fall is 20 m/s.