Carbon dating has<span> given archeologists a more accurate method by which they </span>can<span> determine the age of ancient artifacts. The </span>halflife<span> of </span>carbon 14<span> is </span>5730<span> ± 30 </span>years<span>, and the method of dating lies in trying to determine how </span>much carbon 14<span> (</span><span>the radioactive isotope of carbon) is present in the artifact and comparing it to levels</span>
Answer:

Explanation:
Hello,
In this case, for a first-order reaction, we can firstly compute the rate constant from the given half-life:

In such a way, the integrated first-order law, allows us to compute the final mass of the substance once 10.0 minutes (600 seconds) have passed:

Best regards.
Answer:
We need 27.56 moles hydrogen to produce 13.78 mol of ethane. (option 3)
Explanation:
Step 1: Data given
Moles ethane produced = 13.78 moles
Step 2: The balanced equation
C2H2 + 2H2 → C2H6
Step 3: Calculate moles of hydrogen
For 1 mol acetylene (C2H2) we need 2 moles hydrogen (H2) to produce 1 mol of ethane (C2H6)
For 13.78 moles ethane produced we need 2*13.78 = 27.56 moles hydrogen (H2)
We need 27.56 moles hydrogen to produce 13.78 mol of ethane. (option 3)