Take east to be the positive direction. Then the resultant force from adding <em>F</em>₁ and <em>F</em>₂ is
<em>F</em>₁ + <em>F</em>₂ = (-45 N) + 63 N = 18 N
which is positive, so it's directed east.
To this we add a third force <em>F</em>₃ such that the resultant is 12 N pointing west, making it negative, so that
18 N + <em>F</em>₃ = -12 N
<em>F</em>₃ = -30 N
So <em>F</em>₃ has a magnitude of 30 N and points west.
Answer:
143 kW
Explanation:
Given that
Diameter of the beam, d = 1 mm
Wavelength of the beam, λ = 193 nm
Time used by the pulse, t = 14 ns
Energy of the pulse, U = 2 mJ
Recall that Power can be mathematically calculated using the relation,
Power = Work Done / Time,
To solve this, we apply the formula
P = U / Δt
P = 2*10^-3 J / 14*10^-9 s
P = 142857 W
P = 143 kW
I think D. It starts at (0.0) and goes to the correct points so it makes sense
Assuming the gas behaves ideally,
PV/T = constant. P will also be constant in this giving us:
V₁/T₁ = V₂/T₂
40/320 = 20/T₂
T₂ = 160 K
The answer is A.