Answer:
Idk if this is right but i hope it helps... sorry if it's wrong
Explanation:
Answer:
3.8 x 10²⁴molecules
Explanation:
Given parameters:
Number of moles = 6.32moles
Unknown:
Number of molecules = ?
Solution:
The number of moles can be used to derive the number of molecules found within a substance.
Now,
1 mole of substance contains 6.02 x 10²³ molecules
6.32 mole of PBr₃ will contain 6.32 x 6.02 x 10²³ = 3.8 x 10²⁴molecules
Answer:
0.209M
Explanation:
M1V1=M2V2
(28.5 mL)(0.183M)=(25.0mL)(M)
M2= 0.209M
*Text me at 561-400-5105 for private tutoring if interested: I can do homework, labs, and other assignments :)
When the specific heat capacity of the water is 4.18 J/g.°C so, we are going to use this formula to get the heat for cooling three phases changes from steam to liquid and from liquid to ice (solid) :
when Q = M*C*ΔT
Q is the heat in J
and M is the mass in gram = 1 mol H2O * 18 g/mol(molar mass) = 18 g
C is the specific heat J/g.°C
ΔT is the change in temperature
Q = Mw *[ ( Csteam * ΔTsteam)+(Cw*ΔTw) + (Cice * ΔT ice)]
= 18 g * [(2.01 * (155-100°C)) + (4.18 * (100-0°C)) + (2.09 * (0 - 55 °C))]
∴Q = 7444.8 J
and when we know that the heat of fusion for water = 334J/g
and heat of vaporization for water = 2260J/g
∴Q for the two phases changes = M * (2260+334)
= 18 * (2260+334)
= 46692 J
∴ Q total = 7444.8 + 46692 = 54136.8 J
Given:
Concentration of titrant = 0.1000 M
Volume of titrant = 45 mL
The molarity of analyte depends on the amount of the analyte present in the titrated solution. If the amount of analyte is 20 mL, then its concentration is:
45ml * 0.10 M = C analyte * 20 ml
C analyte = 0.225 M