Answer:
Due to an electron-pair acceptor and donor.
Explanations:
<em><u>Lewis acid</u></em> can be defined as an electron-pair acceptor. An example is Hydrogen ion(H+). This is because it is a proton and it distributes positive charge which means that it accepts electrons(negative charge).
<em><u>Lewis base</u></em> can be defined as an electron-pair donor. This is because it donates electrons to be accepted by the proton. An example is ammonia(NH3).
Answer:
Combination or synthesis
Explanation:
The reaction given below:
C + O₂ → CO₂
The reaction above is termed a synthesis or combination reaction because two substances are combining to give a product.
- A synthesis reaction involves the formation of a single product from two or more reactants.
- The driving force for such reaction is the large and negative heat of formation of the product.
Answer:
150
Explanation:
- C₄H₂OH + 6O2 → 4CO2 + 5H₂O
We can <u>find the equivalent number of O₂ molecules for 100 molecules of CO₂</u> using a <em>conversion factor containing the stoichiometric coefficients of the balanced reaction</em>, as follows:
- 100 molecules CO₂ *
= 150 molecules O₂
150 molecules of O₂ would produce 100 molecules of CO₂.
Answer:
The answer is (H30+) =3,55e-8M and (OH-)=2,82e-7M
Explanation:
We use the formulas:
pH= - log(H30+) and Kwater=(H30+)x(OH-)
pH= - log(H30+) ----< (H30+)= antilog- pH=antilog- 7,45=3,55E-8M
Kwater=(H30+)x(OH-)
(OH-)=Kwater/(H30+)= 1,00e-14/3,55e-8 = 2,82e-7
Answer: D:wavelenght
Explanation: Students will understand that shorter wavelengths have higher frequency and energy.