Answer:

Explanation:
As we know that the frequency of the wave is given as

here we know that

also we know that

now we have


For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,
m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively
(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s
<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
The electron is a type of low-mass, very negatively charged with a particle. As such, it can easily be deflected by passing close to other electrons or the positive nucleus of an atom. m = mass of an electron in kg = 9.10938356 × 10-31 kilograms. e = magnitude of the charge of an electron in coulombs = 1.602 x 10-19 coulombs. Hope this helps!
Answer:
(OD) Velocity
Explanation:
Here, the rider is moving with a steady speed (5 m/s) towards south. In this example, we have magnitude as well as direction. Since velocity is a vector quantity, thus we can determine the velocity of the rider.
Answer:
The initial speed of bullet is "164 m/s".
Explanation:
The given values are:
mass of bullet,

or,

mass of wooden block,

speed,

Coefficient of kinetic friction,

As we know,
The Kinematic equation is:
⇒ 
then,
Initial velocity will be:
⇒ 

On substituting the given values, we get
⇒ 


As we know,
The conservation of momentum is:
⇒ 
or,
⇒ Initial speed, 
On substituting the values, we get
⇒ 
⇒ 
⇒