Use this formula where:
∝ is the average distance between the centers of the two bodies
G is the gravitational constant
M1 and M2 are masses of the parent body and the orbiting body respectively.
Answer:
Explanation:
Given
mass (m)= 20 kg
acceleration (a)= 10 m/s^2
Force (f)= m a
= 20 * 10
= 200 N
Answer:
Approximately
assuming no heat exchange between the mixture and the surroundings.
Explanation:
Consider an object of specific heat capacity
and mass
. Increasing the temperature of this object by
would require
.
Look up the specific heat of water:
.
It is given that the mass of the water in this mixture is
.
Temperature change of the water:
.
Thus, the water in this mixture would have absorbed :
.
Thus, the energy that water absorbed was:
.
Assuming that there was no heat exchange between the mixture and its surroundings. The energy that the water in this mixture absorbed,
, would be the opposite of the energy that the metal in this mixture released.
Thus:
(negative because the metal in this mixture released energy rather than absorbing energy.)
Mass of the metal in this mixture:
.
Temperature change of the metal in this mixture:
.
Rearrange the equation
to obtain an expression for the specific heat capacity:
. The (average) specific heat capacity of the metal pieces in this mixture would be:
.
Answer: 
Explanation:
We are told both planets describe a circular orbit around the star S. So, let's approach this problem begining with the angular velocity
of the planet P1 with a period
:
(1)
Where:
is the velocity of planet P1
is the radius of the orbit of planet P1
Finding
:
(2)
(3)
(4)
On the other hand, we know the gravitational force
between the star S with mass
and the planet P1 with mass
is:
(5)
Where
is the Gravitational Constant and its value is 
In addition, the centripetal force
exerted on the planet is:
(6)
Assuming this system is in equilibrium:
(7)
Substituting (5) and (6) in (7):
(8)
Finding
:
(9)
(10)
Finally:
(11) This is the mass of the star S
Answer:
I dont really know much but i know that it swallow anything it comes across in space.