Complete Question
The complete quetion is shown on the first uploaded image
Answer:
Explanation:
From the question we are told that
The mass of the fly is 
The extension of the web is 
The spring constant is mathematically evaluated as

substituting values


The frequency of vibration is

substituting values


Answer:
ΔS=2*m*Cp*ln((T1+T2)/(2*(T1*T2)^1/2))
Explanation:
The concepts and formulas that I will use to solve this exercise are the integration and the change in the entropy of the universe. To calculate the final temperature of the water the expression for the equilibrium temperature will be used. Similarly, to find the change in entropy from cold to hot water, the equation of the change of entropy will be used. In the attached image is detailed the step by step of the resolution.
Answer: g = 10.0 m/s/s
Explanation:
For a simple pendulum, provided that the angle between the lowest and highest point of his trajectory be small, the oscillation period is given by the following expression:
T = 2π √L/g , where L = pendulum length, g= accelleration of gravity.
We can also define the period, as the time needed to complete a full swing, so from the measured values, we can conclude the following :
T = 140 sec/ 101 cycles = 1.39 sec
Equating both definitions for T, we can solve for g, as follows:
g = 4 π² L / T² = 4π². 0.49 m / (1.39)² = 10.0 m/s/s
Answer:
Restoring force of the spring is 50 N.
Explanation:
Given that,
Spring constant of the spring, k = 100 N/m
Stretching in the spring, x = 0.5 m
We need to find the restoring force of the spring. It can be calculated using Hooke's law as "the force on a spring varies directly with the distance that it is stretched".


F = 50 N
So, the restoring force of the spring is 50 N. Hence, this is the required solution.