Answer:
S = 7.9 × 10⁻⁵ M
S' = 2.6 × 10⁻⁷ M
Explanation:
To calculate the solubility of CuBr in pure water (S) we will use an ICE Chart. We identify 3 stages (Initial-Change-Equilibrium) and complete each row with the concentration or change in concentration. Let's consider the solution of CuBr.
CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)
I 0 0
C +S +S
E S S
The solubility product (Ksp) is:
Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S²
S = 7.9 × 10⁻⁵ M
<u>Solubility in 0.0120 M CoBr₂ (S')</u>
First, we will consider the ionization of CoBr₂, a strong electrolyte.
CoBr₂(aq) → Co²⁺(aq) + 2 Br⁻(aq)
1 mole of CoBr₂ produces 2 moles of Br⁻. Then, the concentration of Br⁻ will be 2 × 0.0120 M = 0.0240 M.
Then,
CuBr(s) ⇄ Cu⁺(aq) + Br⁻(aq)
I 0 0.0240
C +S' +S'
E S' 0.0240 + S'
Ksp = 6.27 × 10⁻⁹ = [Cu⁺].[Br⁻] = S' . (0.0240 + S')
In the term (0.0240 + S'), S' is very small so we can neglect it to simplify the calculations.
S' = 2.6 × 10⁻⁷ M
The Moon completes one orbit around the Earth in approximately 27 1/3 days and completes one cycle of its phases in approximately 29 1/2 days. The correct option among all the options that are given in the question is the second option. I hope that this is the answer that has come to your great help.
Answer:
partly ionic and partly covalent
Addition of chlorine to water gives both hydrochloric acid (HCl) and hypochlorous acid (HClO)
What are Transition metal oxides ?
Transition metal oxides (TMOs) are another class of nanomaterials, frequently used as anode in alkaline batteries due to their distinctive properties such as abundant active sites, short diffusion pathways, low preparation cost, high theoretical capacity and distinct reaction mechanism.
Cl2 + H2O ⇌ HClO + HCl
Cl2 + 4 OH− ⇌ 2 ClO− + 2 H2O + 2 e−
Cl2 + 2 e− ⇌ 2 Cl−
The acid can also be prepared by dissolving dichlorine monoxide in water; under standard aqueous conditions, anhydrous hypochlorous acid is currently impossible to prepare due to the readily reversible equilibrium between it and its anhydride.
2 HClO ⇌ Cl2O + H2O K (at 0 °C) = 3.55×10−3 dm3 mol−1
The presence of light or transition metal oxides of copper, nickel, or cobalt accelerates the exothermic decomposition into hydrochloric acid and oxygen
2 Cl2 + 2 H2O → 4 HCl + O2
To learn more about exothermic decomposition click on the link below:
brainly.com/question/20089404
#SPJ4
The textbook would lose potential energy since its falling from a high height.