Answer:
The resistance is 0.124 ohm.
Explanation:
It is common for domestic electrical installations to use copper wire with a diameter of 2.05 mm. Determine the resistance of such a wire with a length of 24.0 m.
diameter, d = 2.05 mm
radius, r = 1.025 mm
Length, L = 24 m
resistivity of copper = 1.7 x 10^-8 ohm m
Let the resistance is R.

Centripetal force = (mv^2)/r
so r = (mv^2)/ force = 246500 / 1100 = 224 m
Explanation:
Tectonic plate interactions are classified into three basic types: Divergent boundaries are areas where plates move away from each other, forming either mid-oceanic ridges or rift valleys. These are also known as constructive boundaries. Convergent boundaries are areas where plates move toward each other and collide.
Answer:
10.4 m/s
Explanation:
First, find the time it takes for the projectile to fall 6 m.
Given:
y₀ = 6 m
y = 0 m
v₀ = 0 m/s
a = -9.8 m/s²
Find: t
y = y₀ + v₀ t + ½ at²
(0 m) = (6 m) + (0 m/s) t + ½ (-9.8 m/s²) t²
t = 1.11 s
Now find the horizontal position of the target after that time:
Given:
x₀ = 6 m
v₀ = 5 m/s
a = 0 m/s²
t = 1.11 s
Find: x
x = x₀ + v₀ t + ½ at²
x = (6 m) + (5 m/s) (1.11 s) + ½ (0 m/s²) (1.11 s)²
x = 11.5 m
Finally, find the launch velocity needed to travel that distance in that time.
Given:
x₀ = 0 m
x = 11.5 m
t = 1.11 s
a = 0 m/s²
Find: v₀
(11.5 m) = (0 m) + v₀ (1.11 s) + ½ (0 m/s²) (1.11 s)²
v₀ = 10.4 m/s