Answer:
The nail exerts a force of 573.88 Pounds on the Hammer in positive j direction.
Explanation:
Since we know that the force is the rate at which the momentum of an object changes.
Mathematically 
The momentum of any body is defines as 
In the above problem we see that the moumentum of the hammer is reduced to zero in 0.023 seconds thus the force on the hammer is calculated using the above relations as


Answer:
#include <iostream>
using namespace std;
void PrintPopcornTime(int bagOunces) {
if(bagOunces < 3){
cout << "Too small";
cout << endl;
}
else if(bagOunces > 10){
cout << "Too large";
cout << endl;
}
else{
cout << (6 * bagOunces) << " seconds" << endl;
}
}
int main() {
PrintPopcornTime(7);
return 0;
}
Explanation:
Using C++ to write the program. In line 1 we define the header "#include <iostream>" that defines the standard input/output stream objects. In line 2 "using namespace std" gives me the ability to use classes or functions, From lines 5 to 17 we define the function "PrintPopcornTime(), with int parameter bagOunces" Line 19 we can then call the function using 7 as the argument "PrintPopcornTime(7);" to get the expected output.
Explanation:
the owner of the bridge and some workers
Answer:
HUMAN DEVELOPMENT
MOTOR BEHAVIOR
EXERCISE SCIENCE
MEASUREMENT AND EVALUATION
HISTORY AND PHILOSOPHY
UNIQUE ATTRIBUTES OF LEARNERS
CURRICULUM THEORY AND DEVELOPMENT
Explanation:
Answer:
the state of the circuit is a function of the voltage level. The interpretation is up to the user.
Explanation:
A binary digital circuit adopts one of two states, depending on whether the voltage level is above or below some threshold that depends on the design of the circuit. Within each state, the voltage may have some typical range. When the voltage is near the threshold, the state of the circuit may actually be "indeterminate".
The internal/output voltage is a function of the state of the circuit. The interpretation of that voltage as a true/false or 1/0 or other meaning is up to the user of the circuit.
The circuit interprets a given input voltage as intending to convey a particular input signal state according to the circuit specifications. Input voltages near the threshold between states may cause unexpected or even destructive results.
__
In order to conserve space, some digital circuits use more than 2 different voltage levels to signify more than 2 different states.