Answer:
rats. that's all i know of Just about everything except the mother hen if they are natural hatch. Even when you incubate them there are threats. The healthy chicks will mob the weak ones, the older chicks (even by a day) will pick on the younger ones. Temperature extremes will threaten them as they need warm, humid conditions with gradual drops in surrounding temps in the brooder box. Early disease is sometimes a problem and all chicks should be started on medicated chick feed for the first few weeks to prevent several digestive diseases. Even the water dispenser can be a threat as newly hatched chicks will immerse themselves in an open water container so care should be taken to supply water in a self feeding covered dish.
Explanation:
Answer:
A, C and D are correct.
Explanation:
Hello.
In this case, since the relationship between the vapor pressure of a solution is directly proportional to the mole fraction of the solvent and the vapor pressure of the pure solvent as stated by the Raoult's law:

Since the solute is not volatile, the mole fraction of the solute is not taken into account for vapor pressure of the solution, therefore A is correct whereas B is incorrect.
Moreover, since the higher the vapor pressure, the weaker the intermolecular forces due to the fact that less more molecules are like to change from liquid to vapor and therefore more energy is required for such change, we can evidence that both C and D are correct.
Best regards.
<span>write out the balance equation
3NaOh+H3PO4->Na3PO4+3H2O
You are given everything needed to calculate
q=heat transfer=2.2*10^2,
H3PO4 moles= 1.5*10^-3,
NaOH moles=5.0*10^-3
equation is deltaHneutraliztion=q/Moles of limiting reagent
H3PO4 is limiting reagent because lowest moles, and is used up first
Now plug in variables
DeltaH=2.2*10^2(1.5*10^3)= 146.67kj/mole
Notice we had to convert J to kj,</span>
<span>Answer: D. They all have the same number of electrons in the electron cloud</span>