Yes mitochondria does make necrssary chemicals for the cell therefore the answer to your question is yes
Answer:
9.9652g of water
Explanation:
The establishment of the liquid-vapor equilibrium occurs when the vapour of water is equal to vapour pressurem 26.7 mmHg. Using gas law it is possible to know how many moles exert that pressure, thus:
n = PV / RT
Where P is pressure 26,7 mmHg (0.0351atm), V is volume (1.350L), R is gas constant (0.082 atmL/molK) and T is temperature (27°C + 273,15 = 300.15K)
Replacing:
n = 0.0351atm×1.350L / 0.082atmL/molK×300.15K
n = 1.93x10⁻³ moles of water are in gaseous phase. In grams:
1.93x10⁻³ moles × (18.01g / 1mol) = <u><em>0.0348g of water</em></u>
<u><em /></u>
As the initial mass of water was 10g, the mass of water that remains in liquid phase is:
10g - 0.0348g = <em>9.9652g of water</em>
<em />
I hope it helps!
Answer:
d. is the hydrostatic pressure produced on the surface of a semi-permeable membrane by osmosis.
Explanation:
Osmosis -
It is the flow of the molecules of solvent from a region of higher concentration towards the region of lower concentration via a semipermeable membrane , is known as osmosis.
Osmotic pressure -
It refers to the minimum amount of pressure , which is required to be applied to the solution in order to avoid the flow of pure solvent via the semipermeable membrane , is referred to as osmotic pressure.
Or in simple terms ,
Osmotic pressure is the pressure applied to resists the process of osmosis.
Hence ,
From the given options in the question,
The correct option regarding osmotic pressure is d.
The question is incomplete, here is the complete question:
What volume (mL) of the partially neutralized stomach acid having concentration 2 M was neutralized by 0.1 M NaOH during the titration? (portion of 25.00 mL NaOH sample was used; this was the HCl remaining after the antacid tablet did it's job)
<u>Answer:</u> The volume of HCl neutralized is 1.25 mL
<u>Explanation:</u>
To calculate the volume of acid, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of stomach acid which is HCl
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:

Hence, the volume of HCl neutralized is 1.25 mL
25 drops of acid is required to neutralize the 50.0 ml of 0.010m of NaOH in the experiment.
The equation of the reaction is;
NaOH(aq) + HCl(aq) ---------> NaCl(aq) + H2O(l)
We can use the titration formula;
CAVA/CBVB = NA/NB
CA= concentration of acid
VA = volume of acid
CB = concentration of base
VB = volume of base
NA = number of moles of acid
NB = number of moles of base
CB = 0.010 M
VB = 50.0 ml
CA = 0.50 M
VA = ?
NA = 1
NB = 1
Substituting values;
CAVANB = CBVBNA
VA = 0.010 × 50.0 × 1/ 0.50 × 1
VA = 1 ml
Since the total volume of acid used is 1 ml and each drop contains 0.040 ml
The number of drops required is 1ml/0.040 ml = 25 drops
Learn more: brainly.com/question/1527403