I think we will use the law of conservation of linear momentum;
M1V1 = M2V2
M1 = 4 kg (mass of the water balloon launcher)
V1=?
M2= 0.5 kg ( mass of the balloon)
V2 = 3 m/s
Therefore; 4 V1 = 0.5 × 3
4V1= 1.5
V1= 1.5/4
= 0.375 m/s
B- light bends as it passes through an object ( a would be reflect)
Answer:
The boat will be 74 .17 meters downstream by the time it reaches the shore.
Explanation:
Consider the vector diagrams for velocity and distance shown below.
converting 72 miles per hour to km/hr
we have 72 miles per hour 72 × 1.60934 = 115.83 km/hr
The velocity vectors form a right angled triangle, and can be solved using simple trigonometric laws


This is the vector angle with which the ship drifts away with respect to its northward direction.
<em>From the sketch of the displacement vectors, we can use trigonometric ratios to determine the distance the boat moves downstream.</em>
Let x be the distance the boat moves downstream.d



∴The boat will be 74 .17 meters downstream by the time it reaches the shore.
It is <span>C. Low to moderate level of exertion can be sustained over long periods of time </span>